Nutrition of the Developing Gilt for Optimal Lifetime Productivity

Lee J. Johnston1 and Rob J. Smits2

1Professor, University of Minnesota
2Research Manager, QAF Meat Industries, NSW, Australia
Goals of Gilt Development Program

- 55 - 60 pigs weaned per sow lifetime
- 40 - 45% annual sow replacement rate
- 0% sow death loss
- 0% gilt wastage
The Current Situation

- Primary causes of premature sow losses are reproductive failure and lameness.
- Sow losses are too high and premature.
- Sows leave the herd before they become profitable.
Factors to Consider in Gilt Development Programs

- Growth rate of gilts
- Body composition at first mating
- Skeletal integrity
- Structural correctness (Fitness)
Growth Rate
Effect of ADG and Mating Age on Sow Performance over 3 Parities

Kummer et al., 2006

*Total pigs born/litter
Effect of BW at 22 weeks on Lifetime Productive Days

Johnston et al., 2007

Mean wt. (kg) 85.3 91.1 95.3 99.3 103.8 112.3

Lifetime Prod. Days

285ab
298a
288a
301a
284ab
269b

ab(P < 0.05)
Effect of BW at 22 weeks on Lifetime Pigs Born Live

Johnston et al., 2007

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>85.3</td>
<td>17.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.1</td>
<td></td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95.3</td>
<td></td>
<td></td>
<td>17.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.3</td>
<td></td>
<td></td>
<td></td>
<td>18.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>112.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.6</td>
</tr>
</tbody>
</table>

\(r = \) 1958, 1959

\(ab(P < 0.05) \)
Effect of Gilt Development Diet on Stayability through 4 Parities

Stalder et al., 2000
Long et al., 1998

ab(P < 0.05) within parity
Effect of BW at First Mating on Pigs Born over 3 Parities

Williams et al., 2005
Growth Rate Summary

- Extremes (slow and rapid) in growth rate seem detrimental.
- Gilts should gain at least 550 g/d from birth to selection at 160 days of age.
- Growth rate should not exceed 800 g/d from birth to selection to optimize sow longevity.
Body Composition
Body Fat and Reproduction

Johnston et al., 1989

Postweaning interval to estrus (d)

Maternal body fat at weaning (%)

Y = 52.51 - 1.59X

r² = 0.24
(p < .05)
Body Composition Effects on Sow Retention to Parity 4

Rozeboom et al., 1996
Effect of Backfat Depth at 22 wks on Lifetime Productive Days

<table>
<thead>
<tr>
<th>Mean P2 fat (mm)</th>
<th>Lifetime Prod. Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 1958</td>
<td>260<sup>a</sup></td>
</tr>
<tr>
<td>9.4 1959</td>
<td>277<sup>ac</sup></td>
</tr>
<tr>
<td>10.1 1958</td>
<td>286<sup>b</sup>c</td>
</tr>
<tr>
<td>11.0 1959</td>
<td>302<sup>b</sup></td>
</tr>
<tr>
<td>12.1 1958</td>
<td>295<sup>bc</sup></td>
</tr>
<tr>
<td>14.2 1959</td>
<td>304<sup>b</sup></td>
</tr>
</tbody>
</table>

Johnston et al., 2007

abc (P < 0.05)
Effect of Backfat Depth at 22 wks on Lifetime Pigs Born Live

Johnston et al., 2007 abc (P < 0.05)
Effect of Backfat Depth on Lifetime NBA and Longevity

Stalder et al., 2005

Backfat depth (mm) at 113 kg

<table>
<thead>
<tr>
<th>Backfat Depth (mm)</th>
<th>Pigs Born Live</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 9</td>
<td>20.1<sup>a</sup></td>
</tr>
<tr>
<td>9-13</td>
<td>24.1<sup>bc</sup></td>
</tr>
<tr>
<td>3-17</td>
<td>24.8<sup>bc</sup></td>
</tr>
<tr>
<td>17-21</td>
<td>23.2<sup>ab</sup></td>
</tr>
<tr>
<td>21-25</td>
<td>22.6<sup>ab</sup></td>
</tr>
<tr>
<td>> 25</td>
<td>27.6<sup>c</sup></td>
</tr>
</tbody>
</table>

^{abc}(P < 0.05) for maximum parity
^{wxyz}(P < 0.05) for maximum parity
Body Fatness and Structural Correctness

- Pigs selected over 5 generations for correct front leg structure were fatter than pigs with poorer structure (Rothschild et al., 1988)

- Fatter gilts at selection = more correct structure?

- More correct structure = greater longevity
Body Composition Summary

- Seems body fat is not terribly important
- Other factors play a larger role
 - Body weight
 - Body protein mass
 - Sexual age
- Keep body fat within “reasonable” levels
Skeletal Integrity
Historical

- Ca, P, and Vit. D receive most attention related to skeletal growth
- Nimmo et al. (1981) very influential
- Many factors influence bone integrity
 (Davidson, 2006)
- Exercise is an important factor
 (Marchant and Broom, 1996)
Adjusted Tibiotarsus Stiffness of Broiler Strains at 15 Days

Williams et al. 2004

(ab(P < 0.01)
Adj. Maximum Tibiotarsus Load of Broiler Strains at 15 Days

Williams et al. 2004

ab(P < 0.01)
Growth Rate and Bone Strength in Pigs

- Crenshaw (2003) restricted feed intake of pigs from 100 to 72% of ad libitum
- Collected metatarsal bones when BW ranged from 25 to 120 kg
- Diet restriction increased size of bones
- Mechanical properties of bones not influenced by diet restriction
- OCD lesions seemed to decline with diet restriction
Skeletal Integrity Summary

- Rapid growth seems to compromise skeletal quality.
- Maintaining growth from birth to selection at about 600 – 700 g/d seems prudent in the absence of controlled studies to the contrary.
Structural Correctness (Fitness)
Areas of evaluation

- Skeleton (feet/legs, topline, rib, locomotion)
- Mammary soundness
- External genitalia
Structurally Correct
Structurally Incorrect
Front Leg Soundness Score

PIC as cited by Tiranti and Morrison, 2006
Conformation Score Effects on Herd Survival – Front Legs

Tiranti and Morrison, 2006

Conformation score effect (P < 0.02)
Hind Leg Structure Score

PIC as cited by Tiranti and Morrison, 2006
Conformation Score Effects on Herd Survival – Hind Legs

Tiranti and Morrison, 2006

Conformation score effect (P < 0.01)
Effects of a Gilt Selection Program on Sow Losses

A rigorous gilt selection program was implemented in a 20,000-sow commercial system in late 2005.
Mammary soundness
Reproductive soundness
Final Recommendations

- First mating at 2nd estrus
- Mate gilts at 135 to 155 kg BW
 - Considers growth rate of gilts to mating
 - Considers body composition of gilts
 - Requires the use of a livestock scale
- Evaluate “fitness” of gilts at 115 to 125 kg BW
- Protect investment in gilt program by careful management of females after entering the breeding herd.
Questions for the Future

- Effects of early life on longevity?
 - In utero
 - During suckling and nursery
- Dam effects on longevity?
- How will changes in sow housing and management systems influence longevity?
- Can keener stockmanship increase longevity?
- Are there genetic markers for longevity?