Selection for sow longevity: where we are – where to go

Timo Serenius
MTT Agrifood Research Finland
Biotechnology and Food Research
Biometrical Genetics

10.9.2007 SPL SEMINAR
Outline

• Introduction
• Alternative methods to select for sow longevity
• Genetic associations between SPL and other important traits
• Need for further research
Introduction

• Presence of censoring makes BV estimation challenging
 – Best sows still alive --> no full record
 – how to handle this type of data?
 – information from earlier recordable, correlated traits (prolificacy, leg conformation)
Censoring

Culling

1st insemination or farrowing

time

10.9.2007 SPL SEMINAR
Censoring

1st insemination or farrowing

Culling

Time
Censoring

1st insemination or farrowing

Culling

BREEDING VALUE ESTIMATION

10.9.2007 SPL SEMINAR
Alternatives for BV estimation
Stayability

• Simple and practical
 – Did sow reach n^{th} parity or not? (0 / 1)
 – censored observations treated as missing information

• Multiple trait models easy to implement

• Loss of information
 – low h^2 (0.02 - 0.09)
 – censored records as missing information
Repeated stayability records
(Meuwissen et al., 2002)

- Every nth month binary information
 - is sow still alive
 - binary data analyzed with repeatability or random regression model
- Accounts for time dependent effects
- Worked relatively well in simulation
- Nobody has really studied with pig data
Survival analysis

- Probability of sow removal at any given time point \((t)\) given that she is alive at time \(t-1\)
- **Proportional** hazard model
Survival analysis

• Well accepted method to analyze longevity data
• Time dependent effects accounted for
 – e.g. culling policy of farm differs between the years
• The Survival Kit (Ducrocq & Sölkner, 2001)
• Multiple trait analysis not possible in the practice
 – genetic associations with earlier recordable traits
Right censored Gaussian trait

(Korsgaard et al., 2003)

• Treat longevity as normally distributed trait
• Data augmentation utilized for censored records
• Multiple trait models easy to implement
• Time dependent effects not properly accounted for
Right censored Gaussian trait

- LPL modeled well, and censoring properly accounted for
 - h_2 estimates moderate (~0.20)
- Possible to give different definitions to survival in the multiple trait setting
 - e.g. soundnessLPL & fertilityLPL
Age at 1st farrowing and number weaned normally distributed traits
Log(LPL) treated as right censored Gaussian trait
Leg conformation and wean-to-insemination interval categorical traits

Wean-to-insemination
1: < 16 d
2: 16 – 40 d
3: > 40 d

Censored records and liabilities augmented from truncated normal distribution as described by Korsgaard et al. (2003)
- Implemented by modifying C++ programs from a workshop given by Fernando and Kachman (2005)
| h^2 | 0.22 |
| f^2 | 0.23 |
| $r_{g \text{ leg score}}$ | 0.14 |
| $r_{g \text{ AFF}}$ | -0.20 |
| $r_{g \text{ NW}}$ | 0.36 |
| $r_{g \text{ WTI}}$ | -0.05 |
Outline

• Introduction
• Alternative methods to select for sow longevity
• Genetic associations between SPL and other important traits
• Need for further research
Leg conformation

- Overall leg action favorably associated with LPL
- Buck knedd on fore legs
- Weak hind legs

López-Serrano et al., 2000; Serenius et al., 2001, 2006; Serenius & Stalder, 2004
FORE LEGS

small inner claws

legs turned out / in

buck kneed

legs turned out / in

HIND LEGS

small inner claws

weak / upright hind legs

upright / weak pasterns

legs turned out / in
Prolificacy traits

- Age at first farrowing, farrowing interval & weaning to estrus interval favorably associated with LPL
- Litter size estimates vary between the populations

Serenius et al., 2006; Serenius & Stalder, 2004; Tholen et al., 1996
ADG, FCR, carcass quality

- Slightly unfavorably associated with sow longevity
- Strength (and sign) of associations vary between populations

López-Serrano et al., 2000; Serenius & Stalder, 2004; Tholen et al., 1996
Summary – genetic correlations

Carcass quality

ADG, FCR

Meat Quality

Leg conformation

Prolificacy

10.9.2007 SPL SEMINAR
Outline

• Introduction
• Alternative methods to select for sow longevity
• Genetic associations between SPL and other important traits
• Need for further research
Best way to?

• Estimate breeding values for sow longevity
 – time dependent effects vs. multiple trait analysis

• Data collection?
 – only from commercial crossbred farms?
 – trait definition (censoring options)

• Trait under selection?
 – length of productive life, lifetime prolificacy, stayability, No. parities, ...
Further research

- Genetic parameters vary between the populations
 - implications populationwise
- G x E?
1st insemination or farrowing

BREEDING VALUE ESTIMATION

10.9.2007 SPL SEMINAR
8th parity with 23 piglets born
Any questions??